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Abstract 

 

The low soil phosphate availability is one of the most serious constraints in tropical 
agriculture. This is due to either adsorption of soluble Pi ions from the soil solution 
(where it is bioavailable) onto the surface of soil minerals (clays and oxides) or 
precipitation of Pi ions with iron and aluminum ions. This problem is particularly 
important in highly weathered soils and volcanic ash soils. One alternative to increase 
soil Pi availability is to apply high amounts of soluble Pi fertilizers. However, most of 
the soluble Pi ions added are adsorbed or precipitated and, consequently, soluble Pi 
fertilizers have low efficiency in these soils. The use of mycorrhizal fungi helps plant 
roots in nutrient uptake (particularly Pi) increasing thus the effectiveness of these 
fertilizers. Another alternative is the use of rock phosphates, but their low solubility 
discourages their use. The combined used of mycorrhizal fungi and microorganisms 
capable of dissolving Pi compounds can increase the agronomic effectiveness of these 
materials. The concomitant use of both types microorganisms represents a cost-effective 
and environment friendly alternative to enhance the effectiveness of soluble and 
insoluble Pi fertilizers. 
 

Keywords: phosphate fixation, rock phosphate, sorption isotherms, mycorrhizal fungi, 

phosphate solubilizing microorganisms. 
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1. Introduction 

  

The low availability of phosphate (Pi) in the soil is one of the most serious 

constraints on tropical agriculture (Wakelin et al., 2004; Oberson et al., 2006). This is 

due to reactions of adsorption of soluble Pi ions (where it is available for plant uptake) 

onto the surface of soil minerals (clays and oxides) where it is held in unavailable forms 

and precipitation of Pi ions with iron (Fe) and aluminum (Al) ions (Smith, 2002; Khan 

et al., 2007). This problem is particularly important in highly weathered soils and in 

soils formed from volcanic ash. As a result of that in tropical soils most of the Pi 

applied in soluble fertilizers became unavailable for plant use in the short term (Osorio 

and Habte, 2009; Batti and Yamar, 2010). In these soils the efficiency of soluble Pi 

fertilizers is low 5-10% and, consequently, it is necessary to apply high doses, which 

discourages their use by poor farmers of under-developed countries (Reddy et al., 

2002).  

Another alternative consists of the use of rock phosphates (RP), valuable, non-

renewable, and finite resources for agriculture and other applications (Vassilev et al., 

2009; Vassileva et al., 2010). They are world-wide used with a current growing demand 

rate ~3%; however, their low solubility also restricts their use.  

There are increasing concerns about the decline of global RP reserves (Dibb, 2004). 

Recent predictions suggested that the world´s reserves of easily mining RP will last 

100-125 years from now (Gilbert, 2009). This threatens the food security at global 

scale; in fact, some authors have predicted a potential phosphate crisis. We must to 

develop viable strategies to increase Pi fertilizers use efficiency. 

There are soil microorganisms capable of increasing plant root Pi uptake: (i) 

arbuscular mycorrhizal fungi (AMF) form symbiotic association with plant roots that 
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increase water and nutrient uptake, particularly those of limited diffusion (e.g., Pi, Cu, 

Zn) increasing thus the effectiveness of soluble Pi fertilizers (Osorio and Habte, 2013); 

(ii) Pi solublizing microorganisms (PSM) can dissolve insoluble RP applied increasing 

its agronomic effectiveness (Osorno, 2013). Both types of microorganisms can be used 

as biofertilizers to enhance plant Pi uptake especially when they are concomitantly 

inoculated. 

Our objective in this chapter is to discuss that the co-inoculation with both types of 

soil microorganisms represent a cost-effective and environment friendly alternative to 

enhance the effectiveness of soluble and insoluble Pi fertilizers in tropical soils. 

 

2. Phosphate deficiency in tropical soils 

 

Plant roots uptake phosphate ion (H2PO4
-) dissolved in the soil solution; however, its 

concentration is quite low (0.001-0.3 mg L-1). Highly weathered soils and volcanic ash 

soils of the tropics usually exhibit low concentration of soluble Pi (<0.1 mg L-1) 

(Scervino et al., 2010), which limits plant productivity in agricultural crops, grassland, 

and forestry. The low availability of Pi in tropical soils is due to a series of reaction that 

remove soluble Pi into the soil solid phase, which has been called Pi fixation (Barber, 

1995; Collavino et al., 2012).  

 

a. Soil phosphate fixation 

 

Sanchez and Logan (1992) estimated that in the tropics the soils that exhibit high Pi 

fixation capacity occupy 1018 million ha. In tropical America there are 659 million ha 

affected, 210 in Africa, and 199 in Asia. The term Pi-fixation is used to describe two 
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types of reactions that remove bioavailable Pi from the soil solution (Collavino et al., 

2012): (i) Pi adsorption on the surface of soil minerals (clays and oxides) (Fig. 1) and 

(ii) Pi precipitation by cations such as Al3+ and Fe3+ in the soil solution (Havlin et al., 

2004). Pi fixation is particularly a serious problem in highly weathered soils and those 

formed from volcanic ash (Trolove et al., 2003; Do Carmo Harta and Torrent, 2007).  

Phosphate adsorption is particularly strong on iron and aluminum hydrous-oxides 

(e.g. goethite, gibbsite) that predominate in the highly weathered soils of humid regions 

and acid savannas (Jones, 1981; Jackman et al., 1997; Hinsinger, 2001), most of them 

classified as Oxisol and Ultisols. In soils formed from volcanic ash (Andisols), minerals 

such as allophane, ferrihydrite, goethite, and humus-Al/Fe complexes are responsible 

for the strong Pi fixation (Parfitt, 1989; Schwertmann and Herbillon, 1992; Jackman et 

al., 1997; Shoji et al., 1993). 

According to Bohn et al. (1985) the mechanisms of Pi adsorption are: (i) non-specific 

adsorption that consists of electrostatic attraction exerted by positive charges on the 

surface of soil minerals by -OH2
+ groups. In this sites the Pi is weakly held and can be 

exchangeable with other anion (e.g., SO4
2-, NO3

-, Cl-) from the soil solution becoming 

thus available for root uptake; (ii) specific adsorption occurs when Pi ions form single 

(monodentaded) or double bounds on the surface of soil minerals while replace OH- or 

OH2
+  (Fig. 1). In this type of adsorption Pi is strongly held that is not longer considered 

available for plant roots.  

In general, the soil capacity to adsorb Pi ions is as follows: Andisols >Ultisols, 

Oxisols >...>Mollisols, Vertisols> Histosols. 
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Fig. 1. Sites of Pi adsorption on the surface of an iron oxide-hydroxide. On the upper right Pi is 

weakly held by a positive charge [-OH2
(0.5+)] (non-specific adsorption). In the lower right Pi is 

strongly held by a single bound and in the right center by two bounds (specific adsorption). 

 

In acid soils (pH<5.5), Pi precipitation occurs with active forms of aluminum [Al3+, 

Al(OH)2+, Al(OH)2
+] and iron [(Fe3+), Fe(OH)2+, Fe(OH)2

+] (eq. 1 and 2) (Smith, 2002). 

In neutral and alkaline soils (pH>6.5) it occurs mostly with calcium (Ca2+) (Bohn et al., 

1985). Initially, Pi ions precipitate to form initially amorphous (non-crystalline) 

compounds, which became crystalline over time (Brady and Weil, 1999). Amorphous 

minerals are slightly more soluble than their crystalline forms because they have smaller 

particle size, and consequently greater surface area. For instance, the crystalline mineral 

variscite (AlPO4.2H2O) has a surface area of 1.54 m2 g-1 (Taylor and Gurney, 1964) and 

its solubility product (Ksp) is 10-30.5 (Bache, 1963). On the other hand, its amorphous 

aluminum-phosphate counterpart has a surface area of 10.5 m2 g-1 (Juo and Ellis, 1968) 

and a Ksp of 10-28.1 (Veith and Sposito, 1977). In alkaline soils, Pi compounds are 

similarly transformed to more insoluble forms. Initially Pi ions precipitate to form 

calcium-monohydrogen-phosphate, Ca(H2PO4)2 (Ksp= 10-6.6) (Stumm and Morgan, 

1995), which is then converted to calcium-orthophosphate (CaHPO4) (Ksp= 10-24), and 

finally to apatite (Ca5(PO4)3OH; Ksp =10-55.9) (Snoeyink and Jenkins, 1980). 
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H2PO4
- + Al(OH)2

+
↔ AlPO4.2H2O  (1) 

 

H2PO4
- + Fe(OH)2

+
↔ FePO4.2H2O  (2) 

 

In general, there are three major types of soil Pi minerals: aluminum phosphate (Al-

Pi), iron phosphate (Fe-P) and calcium phosphate (Ca-P) (Osorio, 2012) (Table 1). The 

dominance of these compounds depends mainly on the degree of soil weathering. In 

lowly weathered soils (e.g., Mollisoles, Vertisoles) there are high contents of calcium 

and neutral or alkaline pH; consequently, Ca-Pi compounds are dominant usually as 

primary minerals (apatite, francolite). In highly weathered soils (e.g., Oxisols and 

Ultisols), as the weathering proceeds, the aluminosilicate minerals are dissolved and 

those structural elements released into the soil solution (Ca2+, Mg2+, K+, Na+, Al3+, Fe3+, 

among others) (eq. 3-6). The ions of Ca2+, Mg2+, K+, and Na+  are easily leached out in 

humid regions, leaving Al3+and  Fe3+ as the dominant cations that then react with Pi 

ions. 

 

KAlSi 3O8 (microcline) + 8H2O  ↔   K+ + Al(OH)2
+ + 3H4SiO4 + 2OH-  (3) 

 

CaAl2SiO6 (pyroxene) + 8H+ ↔   Ca2+ + 2Al3+ + H4SiO4 + 2H2O  (4) 

 

Mg5Al 2Si3O10(OH)8 (chlorite) + 16H+ ↔  5Mg2+ + 2Al3+ + 3H4SiO4 + 6H2O  (5) 

 

Mg0.2(Si3.81Al1.71Fe(III)0.22Mg0.29)O10(OH)2 

(montmorillonite)+6.76H+↔0.49Mg2++1.71Al3++0.22Fe3++3.81H4SiO4   (6) 
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The soil Pi compounds, as well as the applied Pi fertilizers, are dissolved in a 

different way according to soil pH. Thus, Ca-Pi compounds are more easily dissolved as 

the pH decreases, while Al-Pi and Fe-Pi are dissolved when the pH increases (Fig. 2). 

The acid dilution for these compounds is showed in reactions 7-11. 

 

 

Table 1. Soil mineral Pi fractionation of tropical soils of Colombia (COL) and Hawai’i (HI). 

Source: Osorio (2008, 2012). 

Soil Available Pi* (%) Al-Pi (%) Fe-Pi (%) Ca-Pi (%) 
Lowly weathered: 
     
Vertisol (Lualualei,HI) 0.5 16.7 27.7 55.0 
Mollisol (Neira, COL) 0.6 35.4 11.1 52.9 
     
Highly weathered: 
     
Oxisol (Molokai, HI) 0.03 32.6 58.2 9.1 
Oxisol (Wahiawa, HI) 0.5 24.0 67.8 7.7 
Oxisol (Paaloa, HI) 0.9 22.4 49.4 27.3 
Oxisol (Halii, HI) 0.5 20.7 61.4 17.4 
Oxisol (Makapili, HI) 0.7 6.6 78.3 14.3 
Oxisol (Kapaa, HI) 0.6 43.9 44.5 11.0 
Oxisol (Carimagua, COL) 0.3 10.3 87.6 1.8 
Ultisol (Caucasia, COL) 0.2 8.8 90.9 0.0 
*Soluble and weakly adsorbed 

 

 

Ca5(PO4)3OH (hydroxilapatite) + 7H+  ↔ 5 Ca2+ + 3H2PO4
-  + H2O  (K=1014.46)   (7) 

 

Ca5(PO4)3F (fluorapatite) + 6H+  ↔ 5 Ca2+ + 3H2PO4
-  + F-  (K=10-0.21)    (8) 

 

CaHPO4.2H2O (brushite) + H+  ↔ Ca2+ + H2PO4
-  + 2H2O  (K=100.63)    (9) 
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FePO4.2H2O (strengite) + 2H+  ↔ Fe3+ + H2PO4
-  + 2H2O  (K=10-6.85)   (10) 

 

AlPO4.2H2O (variscite) + 2H+  ↔ Al3+ + H2PO4
-  + 2H2O  (K=10-2.50)   (11) 
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Fig. 2. Solubility of calcium phosphates, variscite (AlPO4.2H2O) and strengita (FePO4.2H2O) as 

a function of pH. Source: Lindsay (2001).  

 

 

b. Isotherm of soil phosphate fixation  

 

The use of isotherm of Pi sorption is a simple way to measure the soil capacity to fix 

Pi (Do Carmo Harta and Torrent, 2007). In our laboratory we used the method 

developed by professors Fox and Kamprath (1970) at North Carolina State University 

and University of Hawaii. Briefly, this consists of applying separately grading amounts 

of soluble Pi (e.g., KH2PO4; 0-2000 mg P kg-1) dissolved in 30 mL of 0.01 M 

CaCl2.2H2O to aliquots of soils (3 g, dry basis) in plastic centrifuge tubes. Then, the 
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tubes are shaken 30 min each 12 h for 6-days. After this incubation period, the tubes are 

centrifuged (15 min, 4000 rpm) and the supernatant filtered with filter paper (and 

membrane filters). The concentration of soluble at equilibrium is measured using the 

phosphomolybdate blue method (Murphy and Riley, 1962); the remaining non-soluble 

Pi is considered fixed into the soil particles. A graph is constructed to show the 

relationship between adsorbed Pi and soluble P. Juo and Fox (1977) proposed classify 

soil Pi fixation capacity according the amount of Pi required (mg kg-1) to achieve a soil 

solution Pi concentration of 0.2 mg L-1 (Table 2). This concentration is considered a 

critical level to obtain 95% of the maximum yield of several agronomic crops.  

Table 2. Categories of soil P fixation capacity and predominant soil minerals. The P0.2 value is 
the amount of added P required to achieve a soil solution P concentration of 0.2 mg L-1. Source: 
Juo and Fox (1977). 

Category P0.2 value 
(mg P kg-1) 

Predominant soil mineralogy 

   
Very low <10 Quartz, organic materials 
Low 10-100 2:1 clays, quartz + 1:1 clays 
Medium 100-500 1:1 clays + oxides 
High 500-1000 Oxides + volcanic ash moderately 

weathered 
Very high >1000 Amorphous material desilicated 

 

The isotherm of soil P fixation is also used to determine the amount of Pi fertilizers 

required (Hue and Fox, 2010). In this case, it is necessary to know the critical soil 

solution Pi level associated to a desired yield for a given crop (Table 3). Examples for 

this use are illustrated in the Fig. 3 with three Colombian soils (Mollisol, Oxisol, and 

Andisol). Whereas the Palmira soil (Valle del Cauca, Colombia) exhibited a low very 

high capacity to fix Pi (P0.2= 64 mg kg-1), the Carimagua soil (Vichada, Colombia) and 

the Chinchina soil (Caldas, Colombia) exhibited medium and very high capacity to fix P 

(P0.2= 352 and 1658 mg kg-1, respectively). These amounts of Pi coincide with the Pi 

requirements of soybean and tomato crops. In the case of corn, the Pi requirements for 

95% of the maximum yield would be 3, 174, and 977 mg of P kg-1 for the Mollisol, 
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Oxisol, and Andisol, respectively. If the corn yield desired is lower (75%) the soil 

solution Pi level should be 0.008 mg L-1, consequently, the Pi required will be lower (0, 

76, 604 mg of P kg-1, respectively). In any case, the soluble Pi fertilizers must be 

applied in the root zone. 

Table 3. Soil solution Pi concentrations required to achieve high relative yields for some 

tropical crops. Source: Fox et al. (1974). 

Crop Soil solution P concentration (mg 
of P L-1) 

to achieve the relative yield 
indicated 

75 % 95% 
Cassava 0.003 0.005 
Peanut 0.003 0.010 
Corn 0.008 0.025 
Wheat 0.009 0.028 
Cabbage 0.012 0.040 
Potato 0.02 0.180 
Soybean 0.025 0.200 
Tomato 0.05 0.200 
Lecttuce 0.10 0.300 

 

y = 29.427ln(x) + 111.87

y = 85.628ln(x) + 489.71

y = 327.57ln(x) + 2185.4
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Fig. 3. Isotherms of Pi fixation for three soils of Colombia. The projection of the dashed line on 

the Y- axis shows the P0.2 value, which measures the soil Pi fixation capacity. Source: Osorio 

(2012). 

 

3. Management of phosphate fertilization in tropical soils  

 

a. Soluble phosphate fertilizers 
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Sanchez and Uehara (1980) discussed the strategy of building-up and maintenance to 

increase soil Pi availability of acidic tropical soils with high Pi fixation capacity. One 

strategy consists of applying a high dose of soluble Pi fertilizers (based on isotherm of 

soil P fixation) followed by small amounts of annual application (Engelstad and 

Terman, 1980). Although a great part of the added Pi is fixed, it may be released over 

several years, thus generating a residual effect. This strategy has been successfully used 

in tropical soils for sugarcane and pineapple (Hawaii), soybean (Brazil), and 

chrysanthemums, roses, carnations, and other ornamental crops (Colombia). However, 

the high soluble Pi fertilization rates that result from this method are not added by most 

farmers in developing countries due to the high cost of Pi fertilizers (Arcand and 

Schneider, 2006; Randhawa et al., 2006; Shigaki et al., 2006). The proportion of the 

added Pi taken up by the first crop is quite low, ranging from 5 to 10%. It means that 

90-95% of the added soluble Pi fertilizer is fixed in the soils in chemical forms that 

slowly release Pi for plants (Engelstad and Terman, 1980).  

Alternatively, the strategy of sufficiency is more common employed; this consists of 

applying moderate and frequent amounts of soluble Pi fertilizers at the crop 

establishment. In this case, no residual effect is expected and soluble Pi must be applied 

every time that a crop is planned. In comparison, the amounts of Pi required in the 

sufficiency strategy are lower than in the building-up and maintenance strategy. 

Unfortunately, the crops yields are also lower. Some examples of the sufficiency 

strategy are illustrated in Table 4 for agronomical crops in Colombia. In this case, the 

method of Bray II is used to determine the soluble Pi required. 
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Table 4. Amounts of P required for agronomical crops in Colombia based on the concentration 

of soil Pi level extracted with the Bray-II method. Source: adapted from ICA (1992), Sadeghian 

(2008). 

Crop 
Soil P-Bray II 

(mg kg-1) 
Required P 
(kg P ha-1) 

   
   
Rice < 10 17-35 
 10-20 9-17 
 > 20 0-9 
   
Potato < 40 163-196 
 40-60 131-163 
 > 60 109-131 
   
Cassava < 10 44-54 
 10-20 33-44 
 > 20 0-33 
   
Pineapple < 10 33-44 
 10-20 22-33 
 > 20 0-22 
   
Banana < 12 60-80* 
 12-20 40-60 
 > 20 20-40 
   
Brachiaria 
grass 

< 5 22-33** 

 5-10 11-22 
 > 10 0-11 
   
Kikuyo grass < 10 22-33** 
 10-20 11-22 
 > 20 0-11 
   
Cocoa < 15 44-54*** 
 15-30 22-44 
 > 30 0-22 
   
Coffee <10 26*** 
 10-20 17 
 20-30 9 
 >30 0 

* Annual application, ** application at establishment of the grassland, ***g plant-1 yr-1. 

 

For instance, if a pineapple crop is going to be established in a soil with a P-Bray II 

value of 3 mg kg-1, the amount of P required would be ~40 kg ha-1 (Table 4). This 
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represents an application of 200 kg ha-1 of diammonium phosphate (DAP, ~20% of P); 

it must be applied in bands near the roots to improve its effectiveness. 

 

b. Rock phosphate 

 

Rock phosphate (RP) is a general term that describes different types of apatites 

[Ca10(PO4)6(F,OH,Cl)2], which are either employed directly as low-soluble Pi fertilizers 

or to produce more soluble Pi fertilizers (Zapata and Roy, 2007). The apatites have 

different type of elemental substitution Ca2+ by Na+1 and Mg2+, and PO4
3- by CO3

2- (e.g. 

Ca10-x-yNaxMgy (PO4)6-z(CO3)zF2), which produces different types of RP (Hammond and 

Day, 1992). Unfortunately, the low solubility of RP and its low agronomical 

effectiveness discourage its direct use (Rajan et al., 1996; Vassileva et al., 2000; Reddy 

et al., 2002, Pramanik et al., 2009). In spite of that, they are frequently used in soils 

with high Pi fixation capacity, because other more soluble Pi fertilizers are quickly fixed 

and are more expensive (Msolla et al., 2005; Randhawa et al., 2006, Yusdar et al., 

2007). Satisfactory results have been obtained in acid soils particularly overtime (i.e., in 

the second and third season after its application). 

There is an increasing interest in enhancing RP reactivity to obtain better, 

immediate, and consistent results through different treatments (Shrivastava et al., 2007; 

Ojo et al., 2007). Some of these treatments include fine grinding, partial acidulation 

with strong acids (eq. 12), thermal alteration, fusion with silica, sodium or magnesium 

carbonate; mixing it with barnyard manures, compost, and green manures (Sanchez and 

Uehara, 1980; Redding et al., 2006; Msolla et al., 2007; Yusdar et al., 2007; 

Shrivastava et al., 2007; Vassileva et al., 2010). Inoculation with arbuscular 

mycorrhizal fungi into soil amended with RP has been successfully used to enhance RP 
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agronomic effectiveness (Manjunath et al., 1989). Another biotechnological approach 

consists of soil inoculation with Pi solubilizing microorganisms (PSM), whose 

production of organic acids accelerate the dissolution of RP (Whitelaw 2000; Vassilev y 

Vassileva, 2003; Havlin et al., 2004; Ramírez and Osorio, 2005; Jayasinghearachchi 

and Seneviratne, 2006; Osorio 2008, Singh and Reddy, 2011). In addition, this has been 

proposed as a biotechnological alternative to produce more soluble Pi fertilizers (Bar-

Yosef et al., 1999; Osorno, 2013). The use of these microorganisms will be discussed 

above. 

 

Ca5(PO4) 3OH (hydroxylapatite) + 7H+ ↔ 3H2PO4
2- + 5Ca2+ + H2O  K=1014.5     (12) 

 

4. Biofertilizers that enhance plant phosphate uptake 

 

The use of microbial inocula as biofertilizer is currently considered as a viable 

alternative to either improve the effectiveness of fertilizers or reduce fertilizer dose 

(Khan et al., 2007). This approach is based on a more sustainable agriculture that 

involves environmental friendly practices to maintain an ecological balance in soils 

(Vessey, 2003: Borges et al., 2011). Several authors have used this biotechnological 

approach to enhance the effectiveness of Pi fertilizers (Oliveira et al., 2009). The most 

relevant types of microorganisms used have been arbuscular mycorrhizal fungi (AMF) 

(Manjunath et al., 1989) and Pi solibilizing microorganisms (PSM) (Kucey and Leggett, 

1989; Whitelaw, 2000). Although the results reported when each microorganisms is 

inoculated separately, they can have synergistic effects when inoculated concomitantly 

(Osorio and Habte, 2013). Next, we will describe a series of studies that show the 
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mechanisms of both types of microorganisms alone and together in increasing Pi 

fertilizer effectiveness in tropical soils. 

Also, PSM may be used to produce industrially soluble Pi fertilizers (e.g. 

superphosphates) via acidulation of RP with organic acids as illustrated with some 

experimental results. 

 

a. Use of AMF to enhance effectiveness of phosphate fertilizers 

 

Plant roots can form a symbiotic association with soil fungi of the phylum 

Glomeromycota (Oehl, 2011). This association is termed “arbuscular mycorrhiza”, 

which means “fungus-root” and is widely spread geographically as well as botanically. 

The fungal hyphae invade the cortical cells inter- and intra-cellularly where these form 

clusters of finely divided hyphae known as arbuscules (Habte, 2006); the arbuscules are 

believed to be sites of exchange of materials between the host and the plant.  

Arbuscular mycorrhizal fungi (AMF) absorb, via extrarradical hyphae, nutrients such 

as N, P, K, Ca, S, Fe, Mn, Cu, and Zn from the soil solution to inside the plants roots 

(Vosatka and Albrechtova, 2009). The most consistent and important nutritional effect 

is to improve the uptake of immobile nutrients such as H2PO4
-. AMF are very effective 

in enhancing plant P uptake, particularly with plant species that lack phisiological or 

morphological mechanisms for efficient P uptake, such as fine-branched root systems 

and abundant root hairs, among others (Manjunath and Habte, 1991; Habte and Osorio, 

2001). 

 

Response of mycorrhizal and non-mycorrhizal plants to RP 
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Mycorrhizal hyphae have a higher affinity for absorbing Pi than roots. Schachtman 

et al. (1998) reported that the hyphae of Gigaspora margarita had an affinity constant 

for Pi (Km) of 2.5 µM (P: 0.077 mg L-1), whereas most plants usually exhibited a Km of 

6-44 µM (P: 0.19-1.36 mg L-1), particularly those highly dependent on the mycorrhizal 

association (Nye and Tinker, 1977; Barber, 1995). 

Some authors have proposed the use of AMF to increase efficiency in plant Pi uptake 

(Mosse, 1981). For instance, Manjunath et al. (1989) studied the effectiveness of 

Glomus aggregatum to enhance plant Pi uptake of Leucaena leucocephala grown in a 

Hawaiian Oxisol fertilized with RP (0.17-2.72 g kg-1). Plant dry weight and shoot P 

concentration did not increase significantly in uninoculated soils. In contrast, in 

inoculated soils with Glomus aggregatum there was a significant increase in plant dry 

weight (Fig. 4a). In similar studies, Herrera (unpublished data) and Ramírez et al. 

(2013) found that the effectiveness of RP addition in increasing plant growth of 

pimenton (Capsicum annuum) seedlings (Fig. 5.a) and cowpea (Vigna unguiculata) 

(Fig. 5.b) grown in a Colombian Oxisol, was significantly increased by the AMF 

inoculation with G. fasciculatum. The results show clearly that the effectiveness of RP 

in increase plant performance was increased if the mycorrhizal fungus was present, even 

in short periods of time (~60 days). In fact, in mycorrhiza-free plant there was no 

response to RP addition. 

Our results contrast with early results obtained by several researchers of RP 

effectiveness (Espinosa et al. 1987; Martínez et al. 1987; León, 1990; León et al., 

1995), in which RP effectiveness was low; also, in these studies crop response to RP 

addition was detected after several months (at least 6 months). In our studies, RP 

effectiveness is evident after in short periods of time.  
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Fig. 4. Shoot dry weight (SDW) of L. 

leucocephala (a), Capsicum annuum (b), and 

Vigna unguiculata (c) as a function of RP added 

and AMF inoculation. Source: Manjunath et al. 

(1989), Herrera (unpublished) and Ramírez et al. 

(2013), respectively. 

 

 

In addition, it has been claimed that RP should be applied only in acidic soils (soil 

pH <5.5), because at low soil pH this will dissolve faster (Havlin et al., 2004). 

However, in our experiments the RP has been effective in increasing mycorrhizal plant 

P uptake and growth even in soils with pH ≥6.0. Several conditions can explain the 

better results when the mycorrizal association is present: (i) it is clear that the elongated 

hyphae can capture soluble P at longer distance than the root alone, (ii) the hyphae is 

more efficient than roots in taking up P from the soil solution, and (iii) the decline of 

soluble P around RP particles promotes their dissolution (Manjunath et al., 1989). 

Presumably, the mycorrhizal hyphae exhibit a more active proton exudation than roots 

alone, which will favor a faster RP dissolution (Vassilev et al., 2001). 
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Response of mycorrhizal and non-mycorrhizal plants to soluble P fertilizers 

 

The inoculation with AMF can increase the effectiveness of soluble P fertilizers to 

promote plant growth as illustrated in Fig. 5. In this series of experiments the soil was 

amended with grading amounts of a soluble P fertilizer (e.g., Ca(H2PO4)2, KH2PO4) in 

order to obtain increasing soil solution P concentrations. In addition, the soil was either 

inoculated with an AMF (G. fasciculatum) or uninoculated (control). The results 

indicated that the plant growth increased with the increase in solution P level as a result 

of the addition of a soluble P fertilizer (except in P. ligularis); however, the effect was 

significantly higher when the soil was concomitantly inoculated with AMF. For 

instance, at a soil solution P of 0.02 mg L-1 the shoot dry weight of mycorrhizal 

Leucaena leucocephala was about 7-fold higher than in non-mycorrhizal Leucaena. In 

the case of coffee (Coffea arabiga), sweet granadilla (Passiflora. ligularis), and lulo 

(Solanum quitoense) the respective increases were 3.0, 3.7, and 1.7 times. Notice that in 

the case of non-mycorrhizal leucaena the plant did not respond until the soil solution P 

reached a value of 0.03 mg L-1 (Fig. 5a). In the case of non-mycorrhizal sweet 

granadilla there was not response to the addition of soluble P fertilization (Fig. 5c). 

In this way, to obtain the maximal plant growth of non-mycorrhizal coffee the soil 

required an addition of 2880 mg of KH2PO4 per kg; the same level of plant growth 

could be obtained in mycorrizhal coffee with only 611 mg of KH2PO4 per kg (Fig. 5b). 

This represents a reduction of 79% in the P fertilizer dose. In the case of lulo same 

calculations suggested a reduction in 66% of the P fertilization dose (Fig. 5d). 



N.W. OSORIO AND L. OSORNO 

19 

Optimal response to mycorrhizal inoculation can be achieved at a soil solution P 

concentration of 0.02 mg L-1. The amount of soluble P required to achieve such 

concentration can be easily determined through an isotherm of soil phosphate fixation. 
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Fig. 5. Shoot dry weight (SDW) of tropical plants (L. leucocephala, C. arabiga, S. quitoense, 

and P. ligularis) as a function of soil solution P concentration and AMF inoculation with G. 

fasciculatum. Source: Habte and Manjunath et al. (1987), Rodriguez and Osorio (unpublished), 

Corredor and Osorio (unpublished), and Gonzalez and Osorio (2008). 

 

b. Use of PSM to enhance RP effectiveness 

 

Many soil microorganisms are involved in soil Pi transformation, contributing thus in 

the biogeochemical cycle of Pi (Chen et al., 2006). These microorganisms release Pi 
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from organic compounds (Ramirez, 2005; Alikhani et al., 2006; Tao et al. 2008; 

Tallapragada and Seshachala et al., 2012) and inorganic compounds (Rao, 1992; 

Gyaneshwar et al. 2002, Oliveira et al., 2009). In the first mechanism, the 

microorganism releases extracellular phosphatase enzyme that hydrolyzes the ester 

bound (C-O-P) (Oberson et al., 2001) (Fig 6.). In the second mechanism, the soil 

microorganism releases low molecular weight organic acid (e.g., citric acid and oxalic 

acid) that dissolve Pi compounds, mostly Ca-Pi (Selvakujmar et al., 2013) (Eq. 13). In 

some cases, a microorganism is capable of carrying out both mechanisms (e.g. 

Aspergillus, Penicillium, Mortierella) (Tao et al., 2008). However, once Pi ions have 

been released they can be either absorbed by plant roots or soil microorganisms (e.g., 

mycorrhizal fungi) or fixed into the soil solid phase (adsorbed by clays/oxides or 

precipitated with Al/Fe ions) (Osorio, 2012). Both types of microorganisms can be 

easily isolated from soils or plant rhizosphere with proper culturable media (Bashan et 

al., 2012; Ramirez and Kloepper, 2010) (Fig. 7). 

 

 

Ca5(PO4) 3OH  + 7H+ + 5 citrate ↔ 3H2PO4
2- + 5 citrate-Ca2+ + H2O  K=1037.9 (13) 

 

 

 

R  – O  – P  – OH  + H2O                        R-OH + HO  – P  – OH  
Phosphatase 

O 
|| 

O 
|| 

| 
OH 

| 
OH  

Fig. 6. Phosphatase enzyme breaks the ester bound and thus releases phosphate into the soil 

solution. 
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(a) (b) 

  

Fig. 7. Petri dishes contained culture media for isolation of RP solubilizing microorganisms (a) 

and microorganisms with phytate activity (b). Notice the halos around the most active microbial 

colonies in both media. 

 

Among the most effective bacterial PSM are species of the genera: Pseudomonas 

(Kim et al., 1998; Bar-Yoseph et al., 1999; Rosas et al., 2006), Enterobacter (Kim et al. 

1998; Vasquez et al., 2000), Bacillus (Kim et al. 1998; Vasquez et al., 2000; Chen et 

al., 2006), Burkholderia (Song et al., 2008; Tao et al., 2008), Serratia (Chen et al., 

2006; Hameeda, 2006), Citrobacter (Patel et al., 2008), Xanthomonas (Sharan et al., 

2008), Rhizobium (Alikhani et al., 2006), Azospirillum (Rodriguez et al., 2004), 

Lebsiella (Chung et al., 2005). Effective fungal PSM belong to Penicillium (Reyes et 

al., 2001; Wakelin et al., 2004; Morales et al., 2007), Aspergillus (Vassilev et al., 1997; 

Vassileva et al., 1998; Whitelaw, 2000; Bojinova, 2008) and Mortierella (Osorio, 2003, 

Zhang et al., 2011; Osorio and Habte, 2013). Also, some yeasts and actinomycetes 

species have been reported as effective PSM (Caroline, 1994, Beauchamp and Hume 

1997, Atlas and Bartha 1998; Hamdali et al., 2008). 

Although bacteria have received great attention, several authors (Arora and Gaur, 

1979; Kucey, 1983; Osorio and Habte, 2009) have indicated that fungi may be 

consistently more effective than bacteria in solubilizing Pi. It seems that after several 

subcultures bacteria PSM lose their ability to solubilize Pi compounds, while fungal 
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subcultures retain this capacity (Whitelaw, 2000, Rashid et al., 2004). Moreover, the 

elongated growth of hyphae allow fungi to have a rapid and abundant contact onto the 

surface of RP particles (Bermanec et al., 2012) and even inside RP particles (Fig. 8). 

However, Alam et al. (2002) indicate that the fungi can immobilize more Pi than 

bacteria. 

 

(a) (b) 

  

(c)  

 

Fig. 8 SEM photographs showing 
RP particles either: untreated (a) and 
treated with PSM. Notice the high 
degree of corrosion due to the 
organic acid attack on the RP 
surface (b), and the colonization of a 
RP particle by hyphae of a PSM (A. 
Zapata and N.W. Osorio, 
unpublished). 
 

 

Different mechanisms have been proposed to explain the microbial RP 

solubilization: 

• Production of organic acids (Bar-Yosef et al., 1999; Hameeda et al., 2006; 

Marschner, 2008) 

• Proton excretion due to NH4
+ assimilation by microorganisms (Whitelaw, 2000) 

• Formation of calcium-Chelates at the surfaces of RP (Welch et al., 2002) 



N.W. OSORIO AND L. OSORNO 

23 

In addition, it has been reported that organic acids can compete with or desorb Pi 

ions on the surface of soil minerals (He and Zhu, 1998; Osorio and Habte, 2013). 

Several authors have reported beneficial effects with the PSM inoculation on plant P 

uptake and grwoth of diverse plant species grown in soils of tropical, subtropical, and 

temperate zones (Table 5). The effects are higher on plant P uptake than in plant 

growth, there are several reasons that explain this: (i) most of these studies have been 

conducted with seedlings or plantlets that acumulate P in the first stages of growth, (ii) 

plant growth depends on other factors (water and other nutrient availability, light, etc.). 

In general, in temperate soils the increases with PSM on plant P uptake are higher than 

in tropical soils, likely due to the higher P fixation in tropical soils. However, this 

contrast of soil types and their influence can be also observed in the tropical zone. For 

instance, Osorio and Habte (2001) reported that the plant P uptake of seedlings of non-

mycorrhizal leucaena increased by 14% with a PSM inoculation (Mortierella sp.) in a 

Hawaian Oxisol (medium P fixation); in a similar experiment established in a Mollisol 

(low P fixation) Osorio (2008) reported an increase of 59% with the same PSM. The 

results reported by Dupponois et al. (2006) are higher (56-74) perhaps due to the lower 

P fixation expected in sandy soils. In the temperate soils the contrast in also clear, 

Wakelin et al. (2004) reported an increase in wheat P uptake of 34-76% in a sandy soil 

of Australia (low P fixation), while Whitelaw et al. (1997) registered an increase of only 

8% in an Ultisol (persumably with high P fixation capacity). 

On the other hand, the presence of AMF seems to have an important role in the 

magnitude of the plant response. For instance, the increase in plant P uptake by PSM 

inoculation raised from 14% in non-mycorrhizal leucaena to 40-73% with mycorrhizal 

leucaena (Osorio and Habte 2001; Osorio 2008; Londoño 2010) with the same PSM 
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(Mortierella sp.) (Table 5). This synergism between AMF and PSM will be discussed 

below in more detail. 

 

Table 5. Increase in plant P uptake and shoot dry weight (SDW) of diverse plant species by 

PSM inoculation in soil of tropical, subtropical, and temperate zones. 

PSM Soil/site Plant Increase (%) Reference 

P uptake SDW 

Tropical zone:      
Arthrobotrys 
ollgospora 

Sandy soil, 
Senegal 

Acacia holoserica 56-74 ----- Dupponois et al., 
2006 

Mortierella sp. Oxisol, Hawaii, 
RP added 

Non-mycorrhizal L. 
leucocephala 

14 19 Osorio and Habte, 
2001 

Mortierella sp. Mollisol, 
Colombia 

Non-mycorrhizal L. 
leucocephala 

59 31 Osorio, 2008 

Mortierella sp. Oxisol, Hawaii, 
RP added 

Mycorrizal L. 
leucocephala 

73 28 Osorio and Habte, 
2001 

Mortierella sp. Oxisol, Colombia, 
RP added 

Mycorrizal L. 
leucocephala 

33 24 Londoño, 2010 

Mortierella sp. Oxisol, Colombia, 
RP added 

Mycorrizal L. 
leucocephala 

40 15 Osorio and Habte, 
2013 

Mortierella sp. Oxisol, Colombia Vigna unguiculata 54 22 Ramirez et al., 2012 

Unknown Acidic soil, 
Taiwan 

L. leucocephala 20-24 ----- Young et al., 1990 

Temperate zone      

P. radicum Sand soil, 
Australia 

Triticum aestivum 34 to 76 ----- Wakelin et al., 2004 

P. radicum Ultisol, Australia Triticum aestivum 8 ----- Whitelaw et al., 1997 

P. albidum Volcanic soil Trifolium pratense ----- 38 Morales et al., 2007 

Aspergillus sp. Turkey Fragaria ananassa ----- 114 Gunes et al., 2009 

A.  awamori Field soil Vigna radiata 263 502 Jain et al., 2012 

E. aerogenes Argentina Phaseolus vulgaris ------ 80 Collavino et al., 2010 

Enterobacter sp. Spain Lactuca sativa ----- 34 Vassilev et al., 2001 

Enterobacter sp. Calcareus soil 
Spain 

Medicago sativa  125 ----- Toro et al., 1989 

Mesorhizobium 
mediterraneum 

Calcareus soil, 
Spain 

Cicer arietinum 100 ----- Peix et al., 2001 

P. thomii Vermiculite-
perlite subtrate 

Mentha piperita 200 ----- Cabello et al., 2005 

P. jessenii  Spain Cicer arietinum ----- 14 Valverde, 2006 

Unknown Sand-vermiculite Medicago sativa ----- 159 Piccini and Azcon, 
1987 

 

c. PSM for RP bioacidulation 

Phosphorus containing fertilizers have an important role in agriculture. 

Conventionally soluble Pi fertilizers are obtained from RP (Goenadi et al., 2000). The 
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PSM can be used in a biotechnological process aiming to improve RP agronomic 

effectiveness and reduces both production cost and environmental pollution in making 

soluble P fertilizers (Stewart and Howell, 2003; Smith and Moore, 2005; Khan et al., 

2007). The bioacidification of RP is a green, clean, and innovative alternative that might 

make attractive this material for agricultural use (Borges et al., 2011). Bar-Yosef et al. 

(1999) proposed the use of a bacterial PSM to dissolve RP by acidification (gluconic 

acid) and thus produces a more soluble P fertilizer (superphosphate type). 

It seems that under in vitro conditions PSM can dissolve as much as 40% of the RP 

in only 5-7 days (Osorio, 2008; Osorno, 2013). Among several factors that control the 

efficiency of RP bioacidification are RP type and particle size, RP amount in 

suspension, microbial composition of culture media, type of microorganisms (PSM), 

stirring conditions, temperature, pH, energy sources for PSM and incubation time 

(Cunningham and Kuiack, 1992; Narsian and Patel, 2000; Ates et al., 2002; Adham, 

2002; Haq and Iqbal, 2003; Nahas, 2007; Xiao et al., 2008; Osorno, 2013). 

As mentioned above, the major mechanism in PSM activity is the production of 

organic acids (e.g., citric acid, oxalic acid) (Bar-Yosef et al., 1999; Hameeda et al., 

2006; Marschner 2008). It has been found that the production of these acids depends 

mainly on C and N sources (Madigan, 2004; Reyes et al., 2006; Nahas, 2007).  

We have found that under in vitro conditions A. niger and Mortierella sp. are more 

efficient in dissolving RP if C is supplied as glucose and N as NH4
+ (Fig. 9 a, b). 

Glucose seems to be the most easily C source for both fungi (Hameeda et al., 2006; 

Sharan et al., 2008; Nisha and Venkateswaran, 2011; Osorno and Osorio, 2012). On the 

other hand, the excess of NH4 
+ causes an excess of positive charge in the cytoplasm, 

which is offset by increasing the H+ pump into the external solution (Roos and Luckner, 

1984; Illmer and Schinner, 1995; Slayman et al., 1990; Cooke and Whipps, 1993). 
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Another mechanism to increase negative charge in the cytoplasm consists in diverting 

some organic anions (e.g. citrate) from the Krebs cycle to it, which although decreases 

microbial growth can improves RP bioacidification (Habte and Osorio, 2013; Osorno, 

2013). Conversely, excessive NO3
- uptake by the fungi is compensated by the release of 

HCO3
- or OH- to the external medium, which prevents RP dissolution.Similar results 

have been widely published by several authors (Nahas et al., 1996; Kara and Bozdemir, 

1998; Reyes et al., 1999). 
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Fig. 9. Effect of C and N source on the ability of a fungus P solubilizer for increasing the 

concentration of soluble P by dissolving RP. Sources: Habte and Osorio (2013) and Osorno 

(2013). 
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Currently, we are investigating other factors that seem to be important (glucose and 

ammonium concentration, type and particle size, type of microorganisms, incubation 

time, among others). 

 

d. Synergistic effects of AMF and PSM to enhance RP effectiveness 

 

It has been shown that the dual inoculation with AMF and PSM can increase the RP 

effectiveness beyond the effect of the AMF inoculation alone. Osorio and Habte (2013) 

evaluated the effects of single and dual inoculation with the AMF G. fasciculatum and 

the PSM Mortierella sp.on plant P uptake and growth of leucaena grown in a Colombia 

Oxisol at Carimagua. The addition of RP increased slighty the plant growth of leucaena 

seedlings; however, the effect of RP addition was significantly higher when G. 

fasciculatum (AMF+) was inoculated and even higher when both microorganisms 

(AMF+PSM+) were concomitantly coinoculated (Fig. 10a). The results were higher 

with at rate of 1.2 g of RP per kg of soil. At this level the AMF inoculation (AMF+) 

increased the shoot dry weitgt by 2.8-times and the dual inoculation (AMF+PSM+) by 

3.2-times over the uninoculated control. The P use efficiency of non-mycorrhizal 

leucaena was only 0.33, but it was increased by 11-times with the mycorrhizal 

inoculation and by 13-times with the dual inoculation. Comparable results were 

obtained by Londoño (2010) in a similar experiment with leucaena grown in a 

Colombian Oxisol at Santander de Quilichao (Fig. 10b). In this case, at the RP addition 

rate of 1.2 g kg-1 the increase in plant P uptaje was 6.6 with AMF alone (AMF+) and 8.2 

with both fungi (AMF+PSM+). 
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Fig. 10. Shoot dry weight (SDW) of L. leucocephala as a function of the RP level added and the 

inoculation with G. fasciculatum (AMF+) and the dual inoculation with G. fasciculatum and 

Mortierella sp. (AMF+PSM+) in two Colombiana Oxisols. Sources: (a) Osorio and Habte 

(2013) and (b) Londoño (2010). 

 

These synergistc effects are associated to the complementary roles of each type of 

microorganism. This is, the PSM dissolve RP releasing thus H2PO4
- ions into the soil 

solution, which are absorbed by the mycorrhizal hyphae that then transfer them into the 

plant roots, avoinding the P refixation by soil minerals. 

 

5. Conclusions 

 

Soil phosphate is a critical factor for plant nutrtion and growth in tropical soils; this can 

be overcome by use of P fertilizers. However, there are some limitations: soluble P 

fertilizers have low efficiency due to the strong P fixation that many of these soils and 

high rates of addition are required. Insoluble P fertilizers as rock phosphates have low 

effectiveness and acidulation is recomended, which increases cost production. The 

biotechnological alternative of using arbuscular mycorrhizal fungi and P solubilizing 

microorganisms can increase the effectiveness of P fertilizers in tropical agriculture. In 
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addition, PSM can be used to bioacidify RP and thus produce more soluble fertilizers. 

Fortunatelly, there are comercial formulations of both types of microorganisms, which 

are available and are currently being used for farmers in many countries.  
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